Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3487, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664424

ABSTRACT

An improved understanding of the underlying physicochemical properties of respiratory aerosol that influence viral infectivity may open new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous studies have shown that an increase in the pH of respiratory aerosols following generation due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a significant increase in SARS-CoV-2 aerostability results from a moderate increase in the atmospheric carbon dioxide concentration (e.g. 800 ppm), an effect that is more marked than that observed for changes in relative humidity. We model the likelihood of COVID-19 transmission on the ambient concentration of CO2, concluding that even this moderate increase in CO2 concentration results in a significant increase in overall risk. These observations confirm the critical importance of ventilation and maintaining low CO2 concentrations in indoor environments for mitigating disease transmission. Moreover, the correlation of increased CO2 concentration with viral aerostability need to be better understood when considering the consequences of increases in ambient CO2 levels in our atmosphere.


Subject(s)
COVID-19 , Carbon Dioxide , SARS-CoV-2 , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , COVID-19/transmission , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Aerosols , Humidity , Ventilation , Respiratory Aerosols and Droplets/metabolism , Respiratory Aerosols and Droplets/virology , Atmosphere/chemistry
2.
J R Soc Interface ; 20(203): 20230062, 2023 06.
Article in English | MEDLINE | ID: mdl-37340783

ABSTRACT

The mechanistic factors hypothesized to be key drivers for the loss of infectivity of viruses in the aerosol phase often remain speculative. Using a next-generation bioaerosol technology, we report measurements of the aero-stability of several SARS-CoV-2 variants of concern in aerosol droplets of well-defined size and composition at high (90%) and low (40%) relative humidity (RH) upwards of 40 min. When compared with the ancestral virus, the infectivity of the Delta variant displayed different decay profiles. At low RH, a loss of viral infectivity of approximately 55% was observed over the initial 5 s for both variants. Regardless of RH and variant, greater than 95% of the viral infectivity was lost after 40 min of being aerosolized. Aero-stability of the variants correlate with their sensitivities to alkaline pH. Removal of all acidic vapours dramatically increased the rate of infectivity decay, with 90% loss after 2 min, while the addition of nitric acid vapour improved aero-stability. Similar aero-stability in droplets of artificial saliva and growth medium was observed. A model to predict loss of viral infectivity is proposed: at high RH, the high pH of exhaled aerosol drives viral infectivity loss; at low RH, high salt content limits the loss of viral infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Respiratory Aerosols and Droplets
3.
Microbiol Spectr ; : e0334722, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36912675

ABSTRACT

While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of E. coli. IMPORTANCE The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease.

4.
Viruses ; 14(9)2022 08 24.
Article in English | MEDLINE | ID: mdl-36146663

ABSTRACT

Respiratory pathogens can be spread though the transmission of aerosolised expiratory secretions in the form of droplets or particulates. Understanding the fundamental aerosol parameters that govern how such pathogens survive whilst airborne is essential to understanding and developing methods of restricting their dissemination. Pathogen viability measurements made using Controlled Electrodynamic Levitation and Extraction of Bioaerosol onto Substrate (CELEBS) in tandem with a comparative kinetics electrodynamic balance (CKEDB) measurements allow for a direct comparison between viral viability and evaporation kinetics of the aerosol with a time resolution of seconds. Here, we report the airborne survival of mouse hepatitis virus (MHV) and determine a comparable loss of infectivity in the aerosol phase to our previous observations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the addition of clinically relevant concentrations of mucin to the bioaerosol, there is a transient mitigation of the loss of viral infectivity at 40% RH. Increased concentrations of mucin promoted heterogenous phase change during aerosol evaporation, characterised as the formation of inclusions within the host droplet. This research demonstrates the role of mucus in the aerosol phase and its influence on short-term airborne viral stability.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Microbial Viability , Mucins , Respiratory Aerosols and Droplets
6.
Proc Natl Acad Sci U S A ; 119(27): e2200109119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35763573

ABSTRACT

Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to ∼10% of the starting value was observable for SARS-CoV-2 over 20 min, with a large proportion of the loss occurring within the first 5 min after aerosolization. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallize at relative humidities (RHs) below 50%, leading to a near-instant loss of infectivity in 50 to 60% of the virus. However, at 90% RH, the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 min, beyond which it decays to only 10% remaining infectious after 10 min. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilization of CO2 from bicarbonate buffer within the droplet. Four different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH.


Subject(s)
Aerosolized Particles and Droplets , COVID-19 , SARS-CoV-2 , Aerosolized Particles and Droplets/chemistry , Aerosolized Particles and Droplets/isolation & purification , COVID-19/transmission , Humans , Humidity , Hydrogen-Ion Concentration , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
7.
Appl Environ Microbiol ; 86(23)2020 11 10.
Article in English | MEDLINE | ID: mdl-32978136

ABSTRACT

Emerging outbreaks of airborne pathogenic infections worldwide, such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, have raised the need to understand parameters affecting the airborne survival of microbes in order to develop measures for effective infection control. We report a novel experimental strategy, TAMBAS (tandem approach for microphysical and biological assessment of airborne microorganism survival), to explore the synergistic interactions between the physicochemical and biological processes that impact airborne microbe survival in aerosol droplets. This innovative approach provides a unique and detailed understanding of the processes taking place from aerosol droplet generation through to equilibration and viability decay in the local environment, elucidating decay mechanisms not previously described. The impact of evaporation kinetics, solute hygroscopicity and concentration, particle morphology, and equilibrium particle size on airborne survival are reported, using Escherichia coli MRE162 as a benchmark system. For this system, we report that (i) particle crystallization does not directly impact microbe longevity, (ii) bacteria act as crystallization nuclei during droplet drying and equilibration, and (iii) the kinetics of size and compositional change appear to have a larger effect on microbe longevity than the equilibrium solute concentration.IMPORTANCE A transformative approach to identify the physicochemical processes that impact the biological decay rates of bacteria in aerosol droplets is described. It is shown that the evaporation process and changes in the phase and morphology of the aerosol particle during evaporation impact microorganism viability. The equilibrium droplet size was found to affect airborne bacterial viability. Furthermore, the presence of Escherichia coli MRE162 in a droplet does not affect aerosol growth/evaporation but influences the dynamic behavior of the aerosol by processing the culture medium prior to aerosolization, affecting the hygroscopicity of the culture medium; this highlights the importance of the inorganic and organic chemical composition within the aerosolized droplets that impact hygroscopicity. Bacteria also act as crystallization nuclei. The novel approach and data have implications for increased mechanistic understanding of aerosol survival and infectivity in bioaerosol studies spanning the medical, veterinary, farming, and agricultural fields, including the role of microorganisms in atmospheric processing and cloud formation.


Subject(s)
Aerosols , Air Microbiology , Coronavirus Infections/transmission , Escherichia coli Infections/transmission , Infection Control/methods , Pneumonia, Viral/transmission , Betacoronavirus/physiology , COVID-19 , Cough/microbiology , Crystallization , Escherichia coli/physiology , Humans , Microbial Viability , Pandemics , Particle Size , SARS-CoV-2 , Sneezing/physiology
8.
Anal Chim Acta ; 784: 25-32, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23746404

ABSTRACT

A micro-analytical method based on spotting urine samples (20µL) onto blood/urine spot collection cards followed by air-drying and extraction (dried urine spot, DUS) was developed and validated for the screening/confirmation assay of morphine, 6-methylacetylmorphine (6-MAM), codeine, cocaine and benzoylecgonine (BZE). Acetonitrile (3 mL) was found to be a useful solvent for target extraction from DUSs under an orbital-horizontal stirring at 180 rpm for 10 min. Determinations were performed by direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) under positive electrospray ionization conditions, and by using multiple reaction monitoring (MRM) with one precursor ion/product ion transition for the identification and quantification (deuterated analogs of each target as internal standards) of each analyte. The limits of detection of the method were 0.26, 0.94, 1.5, 1.1, and 2.0 ng mL(-1), for cocaine, BZE, codeine, morphine and 6-MAM, respectively; whereas, relative standard deviations of intra- and inter-day precision were lower than 8 and 11%, respectively, and intra- and inter-day analytical recoveries ranged from 94±4 to 105±3%. The small volume of urine required (20 µL), combined with the simplicity of the analytical technique makes it a useful procedure for screening/quantifying drugs of abuse. The method was successfully applied to the analysis of urine from polydrug abusers.


Subject(s)
Analgesics, Opioid/urine , Cocaine/urine , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods , Urinalysis/methods , Analgesics, Opioid/metabolism , Calibration , Cocaine/metabolism , Humans , Limit of Detection , Reference Standards , Spectrophotometry, Atomic , Substance Abuse Detection/instrumentation , Substance-Related Disorders/urine , Tandem Mass Spectrometry/instrumentation , Urinalysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...